Characterising Classes of c.e. Turing degrees using strong reducibilities from above

George Barmpalias, Rod Downey, Noam Greenberg

14th December 2007

COMPUTABLE APPROXIMATIONS

DEFINITION

A uniformly computable sequence $\langle f_s \rangle$ is a computable approximation for a function f if f_s converges to f pointwise (in the discrete topology).

That is, for every x,

$$m_{\langle f_s \rangle}(x) = \# \{ s : f_{s+1}(x) \neq f_s(x) \}$$

is finite for all x, with ultimate value f(x).

THEOREM (SCHOENFIELD)

A function f has a computable approximation iff $f \leq_T \mathbf{0}'$.

WEAK TRUTH-TABLE REDUCIBILITY

DEFINITION

A reduction $\Gamma(A) = B$ is a weak truth-table reduction if its use is bounded by some computable function.

ω -C.E. FUNCTIONS

DEFINITION

A function is ω -c.e. if it has some computable approximation $\langle f_{\rm s} \rangle$ such that $m_{\langle f_{\rm s} \rangle}$ is bounded by some computable function.

FACT

A function f is ω -c.e. iff $f \leq_{wtt} \mathbf{0}'$.

TOTALLY ω -C.E. DEGREES

DEFINITION

A c.e. Turing degree **d** is totally ω -c.e. if every $f \leqslant_T \mathbf{d}$ is ω -c.e.

THEOREM (D,G, WEBER)

A c.e. degree is totally ω -c.e. iff it doesn't bound a critical triple in the c.e. degrees below it.

The proof uses permitting and anti-permitting arguments.

RANKED SETS

DEFINITION

A set is ranked if it is an element of some countable effectively closed (Π_1^0) class.

THEOREM (CHISHOLM, CHUBB, HARIZANOV, HIRSCHFELDT, JOCKUSCH, MCNICHOLL AND PINGREY)

If **d** is c.e. and not totaly ω -c.e., then there is some c.e. $A \in \mathbf{d}$ which is not wtt-reducible to any ranked set.

Totally ω -c.e. degrees and with reductions

THEOREM

The following are equivalent for a c.e. degree d:

- 1. Every set in **d** is wtt-reducible to a ranked set.
- 2. Every set in **d** is wtt-reducible to a hypersimple set.
- 3. Every set in **d** is wtt-reducible to a proper initial segment of a computable, scattered linear ordering.
- 4. **d** is totally ω -c.e.

Moreover, the equivalence still holds if in any of (1), (2) or (3), "set" is replaced by "c.e. set".

ARRAY RECURSIVE DEGREES

DEFINITION

A c.e. degree **d** is uniformly totally ω -c.e. if there is a computable function h such that every $f \leqslant_T \mathbf{d}$ has a computable approximation $\langle f_s \rangle$ such that $m_{\langle f_s \rangle}$ is bounded by h.

FACT

A c.e. degree is uniformly totally ω -c.e. iff it is array recursive.

COMPUTABLE LIPSCHITZ REDUCTIONS

DEFINITION

A reduction $\Gamma(A) = B$ is a computable Lipschitz reduction if its use is bounded by n + c for some constant c.

ARRAY RECURSIVE DEGREES AND CL REDUCTIONS

THEOREM

The following are equivalent for a c.e. degree d:

- 1. There are left-c.e. reals $\alpha_0, \alpha_1 \in \mathbf{d}$ which have no common upper bound in the cl-degrees of left-c.e. reals.
- 2. There is a left-c.e. real $\alpha \in \mathbf{d}$ which is not cl-reducible to any random left-c.e. real.
- 3. There is a set $A \in \mathbf{d}$ which is not cl-reducible to any random left-c.e. real.
- 4. d is array non-recursive.

WHAT ABOUT RANDOMS IN GENERAL?

THEOREM

- 1. If **d** is non GL₂, then **d** computes some A which is not cl-reducible to any random real.
- 2. If **d** is c.e. traceable, then every $A \leq_T \mathbf{d}$ is cl-reducible to a random real.

This leaves a gap, even in the c.e. degrees.